
Handling Emergencies in Autonomous Systems July 3, 1997 1

Handling Emergencies in Autonomous Systems with An
Episode-Incident-Alert Workflow

(Unabridged Version)
Paul Baker, Kai-dee Chu, and Cindy Starr

Global Science and Technology, Inc.
Julie Breed

NASA-Goddard Space Flight Center
Jeffrey Fox

Pacific Northwest National Laboratory
Mick Baitinger

NEXTGEN Solutions, Inc.

The following report is an expanded version of a paper presented at the 2nd International
Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations, held at
Keble College, Oxford in July 1997.

1.0 Introduction

A low-cost ground system operation must succeed with little attention from operators or
engineers. For this reason, there is a strong incentive to design future spacecraft and their
support systems for automatic operation. Thus, we anticipate that all future manual inter-
ventions will occur in unplanned, emergency situations. In the past, designers needed to
worry about maintaining operator proficiency in the face of tedious daily repetition. In the
future, our concern must be for the performance of people thrown into an unfamiliar emer-
gency situation.

The Software and Automation Systems Branch (Code 520) of NASA Goddard Space
Flight Center is developing an Emergency Response System (ERS) to coordinate the
response of staff who are assigned on a contingency basis and who are not necessarily
dedicated to one project. Staff will remain on-call at distributed locations from which they
are expected to handle spacecraft anomalies with tools for distributed, group work.

The ERS project has adopted Lotus Notes, E-Mail and WWW protocols as its primary
implementation means. These elements are familiar to many. Although we review their
application in Section 2.0, “The Emergency Response System”, the primary topic for this
discussion is a workflow model that organizes the elements of the ERS to mitigate to sev-
eral serious drawbacks:

1. When people receive notification of an anomaly from an autonomous system, they are
not actively engaged in the operation and lack any awareness of the current situation.

2. Engineers might recognize a problem earlier than an autonomous system and therefore
they might correct it with less loss of data. However, no engineers will be stationed at a
low-cost ground system.

3. The autonomous system may generate a flood of alert messages that builds an exces-
sive queue before any action can be taken in response to the actual problem.

Handling Emergencies in Autonomous Systems July 3, 1997 2

Our workflow model is called Episode-Incident-Alert or E*I*A. An Episode is any time
sequence that deserves examination. Episodes are recognized automatically; then, teleme-
try data are assembled to describe what happened during the episode. Automatic analysis
programs examine these telemetry data sets in various ways to characterize the engineer-
ing state of the spacecraft. Based on that analysis, an episode may be set aside or elevated
to the status of an Incident, which is an episode that demands attention. Every incident
carries with it the telemetry data from the episode as well as any numeric output from the
analysis. An incident is recorded in a data base where it is accessible remotely to anyone
with proper authorization.

Lastly, a workflow system sends Alerts to obtain help with the incident. An Alert is a noti-
fication of an Incident that is sent to an engineer or a specialized autonomous agent. If the
engineer or agent does not respond in a timely manner, the workflow system issues alerts
to other parties until the Incident has been handled.

In summary, many episodes are recognized during normal operation. All are examined
automatically. A few may show indications of trouble, and those few are raised to the sta-
tus of an incident. This step filters the episodes to avoid raising unnecessary concerns. For
every incident, one or more alerts are sent to obtain help. When help arrives, there is a
package of contextual data available to inform the diagnosis of the incident and the correc-
tion of any problem. This contextual data mitigates the difficulties the staff will experi-
ence when they are suddenly confronted with an emergency. That is the primary benefit
that we claim for the E*I*A workflow model.

A ground system that employs this E*I*A model can provide valuable functions:

• The system coordinates an effective response to a problem without requiring dedicated
engineers or operators. See Section 2.0, “The Emergency Response System”.

• The system captures engineering expertise and applies it automatically and routinely to
recognize incidents before the problem escalates to a severe level. See Section 3.0, “An
Engineering Case for E*I*A”.

• The system consolidates messages and status information so that it does not overwhelm
the staff when they must respond to an emergency. See Section 4.0, “A Practical Case
for E*I*A”.

The next section will provide background information on a closely related development,
the Emergency Response System. Subsequent sections will present a motivation for the
E*I*A model. Finally, we will describe how model has been implemented in software.

2.0 The Emergency Response System

The E*I*A Model is not a system, rather it is a concept for using a system to provide bet-
ter operations. To demonstrate the concept in a real operation, we need to imbed the model
in an actual system. Currently, we are using the E*I*A Model to enhance a system called
the Emergency Response System or ERS. In this section, we will introduce the ERS and
point out its interfaces to the additional components needed to implement the E*I*A
model. The ERS has been and will remain a project in its own right; consequently, this
section will digress somewhat from the main topic to explain why the ERS was developed
and how it works.

Handling Emergencies in Autonomous Systems July 3, 1997 3

The essential core components of the ERS handle anomaly messages, engage assistance
from standby resources, and track the response to an anomaly. Currently, the ERS uses
Lotus Notes to implement workflow and store the information where it is accessible
remotely. The configuration of the essential system is illustrated in Figure 1. This figure
also illustrates additional components that are used to implement the E-I-A workflow.

A few words on Lotus Notes may be in order. Notes is a commercial product built upon an
atypical database that has some relational and some object oriented features. The database
allows distributed access to data and provides optional replication of information to redun-
dant servers. The original goal for replication was the support of mobile computing; that
is, the continuation of service during an interruption of the connection to the primary
server. For ground-systems, replication promises redundancy and the possibility to limit
direct Internet access to the primary server for security reasons. The product incorporates
E-Mail and news group features as well as a full set of tools for form-based interaction
with the data base.

Lotus Notes workflow is handled by scripted agents, which operate together according to
an overall design. Unfortunately, the Notes system implements design with many isolated
code fragments, which are hard to maintain. In our application, these scripts recognize
problems, identify what person or agent can help, and notify the person or agent.

The most recent version of Notes incorporates an HTTP server to handle requests from
Web browsers; although, the normal Notes browser is inexpensive and has better hyper-
text features than any Web browser. All Notes documents may contain embedded copies

FIGURE 1. Core Components of the Emergency Response System

anomaly
response
tracker

contact
management

Notes data base

remote access via Notes or Web

E-Mail about
anomaly

Management
Report

E-mail request
for assistance

Pager Alert

Web
Browser

Notes
Client

Episode/Incident
Recognition

Module

Handling Emergencies in Autonomous Systems July 3, 1997 4

of document fragments from other applications. These embedded components can be
viewed in any client browser, Unix, Mac, Windows. A client with the proper access privi-
lege may also edit embedded documents if the original application is installed locally and
OLE is running. We use the embedded documents to distribute context data concerning
the ground system incidents.

Notes software is robust and free of internal problems, but it is exceptionally hard to
install; moreover, documentation for Notes installation and configuration is very poor.
Consequently, it requires considerable time and effort to start an operation based on Lotus
Notes. Lotus Notes is the leader in its field, a status it has achieved through a unique com-
bination of features. Any particular feature in Notes is often inferior to the one found in a
more specialized competitor. For our projects, it was important to select a mature product
with a full set of features. Lotus Notes fit that description best.

We are currently cooperating with new missions to assist the mission and obtain field
experience that will guide the refinement of the ERS. The primary interface from the ERS
to the mission ground systems is currently via E-Mail messages as illustrated in Figure 1.
The messages are filtered to recognize anomalies, which are then handled individually or
in small groups. The ERS implements the following scenario. The steps that use built-in
features of Lotus Notes are marked with bold type:

1. An anomaly arrives via E-Mail from the event message filter. An agent activated by E-
mail arrival converts it into an anomaly document.

2. Every anomaly document is the start of a hierarchy of response documents that
record the history of the response to the anomaly.

3. An agent activated by new documents reads the anomaly, consults a data base of rec-
ommended resources and sends an E-Mail message to the resource. A resource may
be a trained person or a specialized software agent.

4. The person (or agent) that receives the E-Mail message describing the anomaly will
respond to the problem and then file a response document with the Notes system.

5. Agents activated by a watchdog timer look for anomaly documents that lack a proper
response attachment. If a preset time is exceeded, the agent triggers a second alert.

6. Outside engineers and agents can use remote access to examine the anomaly docu-
ments using database forms and views.

The ERS must be enhanced to support of the E*I*A model because the original E-Mail
notifications do not provide enough information. The enhancements are installed as sepa-
rate modules that are activated by Notes itself. There are many such modules, because
there are many possible types of Episodes. The next two sections will describe two impor-
tant types of episodes. Section 5.0, “Recognizing the Episodes” will summarize the gen-
eral types of episodes.

3.0 An Engineering Case for E*I*A

It is our opinion that engineers who design spacecraft and test them before launch possess
an understanding of the hardware systems that surpasses that of the operator teams work-
ing in today’s control centers. Operators may overlook a problem that an engineer might
detect easily using numerical analysis. Automating the operator’s job is not enough. In

Handling Emergencies in Autonomous Systems July 3, 1997 5

addition, we need to apply the engineer’s expertise, as the following example will illus-
trate.

Suppose we have asked the automatic system to record episodes of time when the space-
craft is in the Earth’s shadow and the batteries are losing charge without solar power. For
every episode, the system assembles measurements of the currents and voltages as they
vary over time. A set of such measurements might resemble the simulated set shown in
Figure 2. The battery starts at full charge when the Sun goes into eclipse and the episode
starts. Thereafter, the voltage drops as charge drains away. The current load varies depend-
ing upon what experiments are active, so the episodes produce curves that spread over a
band. The simulated data in the figure contains one curve generated for a battery with a
severe capacity loss. Although the problem is annotated in the figure, an unaided eye can-
not find the problem curve among the normal curves.

In a typical automatic monitor, a Red Alert is triggered when the voltage falls below a cer-
tain value. Obviously, that value must be set lower than the minimum voltage that is
reached during a normal episode. A fixed voltage limit is a only a very inaccurate measure
of battery health, unfortunately. The problem curve in Figure 2 stays well above the nor-
mal minimum and hence above the trigger level for a Red Alert. Neither would a trend
analysis program find the problem because the curve lies within normal slopes and levels.

The battery problem is not easily seen in this one curve because the problem coincided
with a period of time when the current load was low. At some later time, the current drain
will be higher, the voltage will drop more, and the Red Alert will trigger. Because the
problem is real it will surface - when it impacts the rest of the spacecraft! It would be far
better to recognize the problem early and reschedule the loads so that the battery voltage is
never lower than expected.

FIGURE 2. Example of Trends during Several Episodes

Battery Discharge Episodes

15

15.2

15.4

15.6

15.8

16

2 10 18 26 34

Time (minutes)

V
o

lt
ag

e

incident

Handling Emergencies in Autonomous Systems July 3, 1997 6

Once an engineer is alerted to such a problem he or she can easily detect earlier incidents
by looking at the records and quantitatively analyzing the response of the battery to its
electrical-current load. Normally however, engineers have too many responsibilities to
analyze the performance quantitatively on a routine basis. Many technical problems are
not be detected until very late.

What we suggest for the future is a new agreement with the engineers establishing a coop-
eration with the project. The engineers are the key. Only the design and test engineers are
really qualified to develop the necessary quantitative tools for problem detection and anal-
ysis. Once developed however, the tools can be incorporated in a routine, automatic analy-
sis system. Operations automation can then free the engineers to use their talents creating
new systems while still providing an early detection system for technical problems. The
E*I*A model was designed to support this operations concept.

Engineers may be interested in how the concept will impact their work. Are they required
to build analysis tools in a particular form? Must they learn to program? In the ERS, we
offer engineers the option to provide spreadsheet models for various engineering sub-
systems. Most engineers understand how to use spreadsheets, and no special computer
equipment is needed to develop and test the spreadsheets. Ground system designers can
then integrate the spreadsheets using new tools for software integration such as OLE auto-
mation. A specific implementation of the concept will be described in Section 6.0, “Pro-
cessing Engineering Episodes”.

4.0 A Practical Case for E*I*A

In Section 2.0, “The Emergency Response System”, we described a system to handle
unexpected problems during automated operation. In early tests, the system recognized
and responded to event messages that signify a problem. This approach is very common.
Many control centers issue event messages and use them to draw attention to problems.
The event-based approach has some practical difficulties when it is applied to a highly
automated operation. Here are a few of the practical problems:

1. When the satellite system goes from nominal to abnormal operation, the event stream
changes from a stream containing no alarm events to a stream that typically contains
many, redundant alarm events. Because it takes some time for the ERS to recruit help,
alarm events will continue to arrive and great numbers of redundant alarms will be
issued. This situation is unacceptable because, when the staff finally contact the opera-
tions center, they must respond to each of the redundant alarms.

2. The event stream merges many types of events that pertain to different technical sub-
jects and conditions. The contingency staff has difficulty using this event stream to
understand the situation because relevant and irrelevant events are interleaved. Event
streams should be filtered into subset streams that are specific to a subject.

3. The staff may decide that a condition cannot be corrected immediately and they may
wish to override the system to temporarily disable the alarms. If the alarms are set to
fairly general specifications and if the alarm is then turned off, then it is possible that a
new condition may occur but no alert will be generated. For example, the alarm may be
triggered by a message beginning with “RED_X”. If the engineers decide that
“RED_X1” is acceptable temporarily and, therefore, they disable the alarm, then a new
message such as “RED_X2” will not cause an alarm.

Handling Emergencies in Autonomous Systems July 3, 1997 7

4. The event stream is a poor way to show causal connections and patterns, without con-
siderable additional processing. Consequently, events alone are not the ideal material
for the context data that we would like to supply to the contingency staff who must
respond to an alert.

We are currently applying the E*I*A model to regular episodes in a way that solves the
first three problems and mitigates problem four.

5.0 Recognizing the Episodes

An episode is an interval of time that is worthy of study to verify the condition of the
spacecraft. There appear to be three important categories of episodes and each must be
handled slightly differently in the software:

Engineering Episodes. Are intervals bounded by a start time and a stop time that were
derived by examining the continuous variation of engineering parameters. In general, we
don’t know the length of such intervals in advance. Consequently, the selection process
must recognize the interval in the real-time data stream and then retrieve the data for the
interval from a playback data stream. Usually, we are interested in continuous changes
during an engineering episode so the definition of the episode will specify which parame-
ters to sample and a sampling time. The motivation for using engineering episodes was
discussed above in Section 3.0, “An Engineering Case for E*I*A”. The implementation
approach we are using will be described in Section 6.0, “Processing Engineering Epi-
sodes”.

Scheduled Episodes . Are intervals defined around a scheduled event such as a com-
mand. The time interval is known in advance so that the selection process can wait for the
arrival of the data and sample data as it arrives. Our current implementation does not work
with scheduled episodes for two reasons. First, prototype is not connected with the com-
mand management subsystem. Second, we have not had time to develop rule-based soft-
ware to evaluate the content of a scheduled episode.

Regular Episodes . Are intervals defined with a fixed duration. One such episode follows
another indefinitely. Regular episodes have two important applications. First, Regular epi-
sodes are necessary when the test for an incident is a statistical test. Such a test must be
applied to an interval rather than at a point. Second, a regular episode can be used to con-
solidate events to prevent overloading the emergency response system with redundant
alarms. This issue was discussed above in Section 4.0, “A Practical Case for E*I*A” and
our current implementation approach is described in Section 7.0, “Processing Regular
Episodes”.

A key feature of the episode concept is that episodes focus on specific issues - hardware
components, performance, etc. It is really the focus that makes them valuable because the
specific nature of each episode will allow the ERS to recruit well-qualified contingency
staff to handle a problem. Moreover, the automatic system can assemble contextual data
on a specific subject that will help the staff resolve any problems. If each episode is
focused, however, there must be many different types of episodes to cover all important
issues. Therefore, the episode recognition software must run many algorithms simulta-
neously.

Handling Emergencies in Autonomous Systems July 3, 1997 8

Our current implementation uses the software architecture illustrated in Figure 3.

The telemetry data stream must be broadcast to a series of data processing pipelines oper-
ating in parallel. Each pipeline takes responsibility for one kind of episode and operates
independently of the others. Within each pipeline there are a uniform series of steps begin-
ning with the recognition of the time intervals that define the episode. The next step
selects data from the time interval. The selected data are then packaged and sent for classi-
fication. If an incident is recognized in the data, its description and associated data are for-
warded to the core components of the ERS which handle the alerts to engineers and
operators.

It is important that there are multiple, independent episode handlers because each handler
should be devoted to a single, obvious engineering issue. When that is the case, the ERS
can take appropriate action following an incident based on the clear definition of the cir-
cumstances leading up to the recognition of the episode.

FIGURE 3. A Typical Software Architecture Implementing the E*I*A Model

Recognition Selection Packaging Classification

Data
Service

telemetry
data

stream

Document
DocumentIncident Description

and Documentation

Recognition Selection Packaging Classification

Recognition Selection Packaging Classification

Handling Emergencies in Autonomous Systems July 3, 1997 9

6.0 Processing Engineering Episodes

In this section, we will outline our current approach to processing engineering episodes.

The data flow for processing one type of engineering episode is shown in Figure 4. Each
episode type has a separate processing flow operating concurrently, as illustrated earlier in
Figure 3.

The flow begins with the delivery of data values to an extraction program. This program
uses numerical criteria to find the start and stop of an episode. In the example cited above,
the program might use the output of the solar panels to distinguish periods when the bat-
tery is undergoing pure discharge. In any case, it will select a predefined set of data param-
eters and record their values over the time interval. The results are place in an episode file,
one file for each time period. When the file is complete, the program sends an E-Mail to
Lotus Notes to inform it that the file is available. In our current version, Notes then sends
the file name to a spreadsheet program: Excel from Microsoft Inc. Excel copies the file
data into a template spreadsheet that was prepared earlier.

The expertise of the engineers enters the system via this spreadsheet. The spreadsheet con-
tains a numerical model of a physical process, e.g. battery discharge. When the measured
values are inserted in the spreadsheet, the engineer’s formulae are used to generate pre-
dicted values that are then compared to the actual measurements. In the example we have
been using, the spreadsheet uses the initial voltage of the battery and the measured cur-
rents to predict the discharge of the battery and the change in its voltage over the time
interval. The prediction is then compared to the measured voltage during discharge. The
spreadsheet reviews the differences and compares them to a numerical tolerance, which is
also set by an engineer. If the differences exceed tolerance, a spreadsheet cell is set to the
classification “incident”. When Excel has finished, it has produced a quantitative evalua-

FIGURE 4. Engineering Episode Processing Flow

Extract
Episode

Data Values

Data Server

Excel
(spreadsheet)

Lotus Notes

E-Mail
Notification

Episode Files

Episode Document:
Summary: -----
Incident: yes/no
Embedded Data:
Embedded Chart:

file name

read
data

analyzed
data

Handling Emergencies in Autonomous Systems July 3, 1997 10

tion of battery performance similar to one an engineer might produce. As a last step before
returning to Lotus Notes, Excel uses the data to build a graph that enhances the display of
the data, if it must be examined later.

Lotus Notes builds a new document for the episode and then does two things with the
spreadsheet. First, it reads selected values and fills in fields in the document. The most
important field is the classification of the episode; that is, whether it is an incident or not.
If it is an incident, then the ERS handling system will be activated as soon as the document
is complete. Second, Lotus Notes will embed the spreadsheet itself in the document. This
step ensures that the engineering evaluation will accompany the episode document wher-
ever it goes.

The processing system uses a mixture of software. We are using RTserver and RTplayback
from Talarian’s RTworks to provide the data server function. We use commercial software,
Excel and Notes, plus scripts for that software in Visual Basic and Lotus Script, respec-
tively. The initial extraction of the episode is accomplished with a simple C program.

7.0 Processing Regular Episodes

The time interval for a regular episode is determined by a fixed, periodic series of inter-
vals, without regard to what is occurring during the episode. The time interval for the reg-
ular episode is chosen strictly for convenience. When the interval is long enough, we can
be certain that the ERS will issue only a small number of alerts to the contingency staff.
On the other hand, no alert will be issued until the episode interval is complete; therefore,
we cannot make the interval too long or an alert will be unreasonably delayed.

Currently, we envision the regular episodes as a means to handle event messages from the
ground system. For this reason, the processing of regular episodes must resolve the issues
discussed in Section 4.0, “A Practical Case for E*I*A”. In any case, the event messages
are basically textual; therefore, our implementation of processing for messages is funda-
mentally a text pattern matching algorithm.

There can be multiple definitions for regular episodes, just as there are multiple definitions
for all episodes. Each definition establishes an independent search that will be applied to
the regular time intervals. Each search looks for evidence on a particular subject or condi-
tion and then assembles contextual data on that subject. Currently, the search technique
uses one or more regular expression text patterns, which the software can match against

Handling Emergencies in Autonomous Systems July 3, 1997 11

the text of the event messages. The text patterns are used in each of a set of three filters
that are combined as illustrated in Figure 5.

The three filters are:

• Context filter - selects events that are needed to understand the subject of the episode.

• Trigger filter - selects events that indicate the episode must be treated as an incident. If
the interval is classified as an incident, it will be handled by the ERS.

• Inhibit filter - may be set to reject any event that passes the trigger filter. In effect, the
inhibit filter will selectively override the trigger filter.

These three filters are set by descriptions stored in Lotus Notes, which is used here only as
a configuration data base. The description for each filter includes 1) one or more regular

FIGURE 5. Regular Episode Processing for Event Messages

Event
Stream

Trigger
Filter

merge
duplicates

Summarize
Events

Classify
Episode

keep/
discard

Lotus Notes

Event Summary
Filtered

Event List
Classification

Episode Context Document

switch
setting

Context
Filter

keep/
discard

Inhibit
Filter

keep/
discard

filter
descriptions

Handling Emergencies in Autonomous Systems July 3, 1997 12

expressions, 2) an instruction to match the text expression against a particular message
field or the whole message, and 3) a flag to specify whether the system should save the
records that pass through the filter.

The primary features of the processing are indicated by the elements drawn with heavy
lines in Figure 5. An Event Stream is the source of information, and the result is a classifi-
cation. The classification is achieved by sending the events through the trigger filter.
There is one enhancement to this basic flow however.

We realize that an engineer will sometimes wish to disable the trigger on certain events if
he or she has already studied a problem but cannot correct it immediately. There is a risk if
the engineer disables the trigger filters directly. Instead, the engineers and operators are
encouraged to disable the trigger only for a narrow range of message types. They can
selectively disable the trigger action by entering a vary narrow filter pattern in the inhibit
filter. Events that activate a trigger filter but match the narrow inhibit filter will be blocked
and have no effect. At the same time, the trigger filter can still respond to other events.

While the filters are operating, the system accumulates a sequence of filtered events that
become part of the context data that accompanies an incident. Of course, trigger events
should be saved, but there may also be a reason to save a wider range of events. For exam-
ple, it may be useful to trigger on “red alerts” but store both “red” and “yellow” conditions
to better characterize the situation. The filter system allows an easy way to expand the
scope of what is stored. Any message that passes the context filter will be stored with the
filtered event list.

While the filters operate, the system also produces a summary of events. This summary
includes counts of how many events were processed and how many passed each filter. For
each filter, the summary also includes a set of event types. Every regular expression has an
annotation that specifies an event type that describes events that match the expression.
When a filter sees an event that matches an expression, it places the corresponding event
type in the summary set.

These summary sets of event types show an overall a pattern that characterizes the situa-
tion. In the future, we expect that expert system tools may be able to perform some analy-
sis on the elements of the event type sets. For example, a case-based reasoning tool might
use the sets to identify similarities between situations.

The episode filters are implemented as a set of software objects that follow the View or
Observer pattern and observe a common event source object, which follows the Model or
Observable pattern. These software patterns are implemented by reusable code from the
RogueWave class library, Tools++. The same library supplies the code for the regular
expressions. The time intervals for the episode are set for us by the current ground system.
This system delivers events to us as a series of log files occupying about one hour of time
each. Because one hour seems like a reasonable interval for our purposes, we have not
changed any aspect of this ground system feature.

This concludes the description of the current event message processing. In the future, we
would like to add a system that reviews patterns of events for patterns of cause and effect.
Such an enhancement would require a rule based system, but none has been integrated yet
with the ERS or the E*I*A software.

Handling Emergencies in Autonomous Systems July 3, 1997 13

8.0 Summary and Forecast

We have developed a system, the ERS, that aids in the resolution of unexpected situations
on an emergency basis. We anticipate that, very soon, the only situations involving people
will be emergencies, because future control centers will run without staff. Our system is
based on groupware so that a team can be recruited quickly from remote sites and the team
can begin work on an emergency using networking tools.

The E*I*A Model guides the implementation of many operational modes in this system.
The model describes a way to organize and present data for an effective response from the
emergency staff. The principles of organization are: 1) isolation of a time interval - the
episode - 2) focus on one subject - the issue programmed in an episode handler - 3) atten-
tion to all subjects - via concurrent operation of episode handlers - and 4) documentation
of the incident through embedded data and analysis results.

In the future, we expect to add additional levels of automation. For example, an incident
could be sent initially to an expert system for resolution. If the expert system can suggest
and implement an effective response, then no alter needs to be sent to human operators. As
a second example, we envision adding case-based reasoning that tracks the incidents and
the manual responses, learns how the two are related, and eventually forms its own deci-
sions without human intervention. In other words, we are improving the information flow
now for the contingency staff, but the same improvements should also support future
developments in automatic operation.

For additional information please contact:

Paul L. Baker
Global Science and Technology, Inc.
6411 Ivy Lane, Suite 610
Greenbelt, MD 20770
(301) 474-9696
pbaker@gsti.com

and see http://abita.gsti.com/July97.htm

